Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Tetrakis[(4-aminopyridinio)acetatoκO]diaquamanganese(II) diperchlorate

Yu Zhang, Hanbing Tao, Chunying Duan, Yizhi Li and Longgen Zhu*

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China Correspondence e-mail: longgen_zhu@yahoo.com

Received 24 October 2001
Accepted 7 January 2002
Online 28 February 2002

In the centrosymmetric title complex, $\left[\mathrm{Mn}\left(\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{4}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$, the $\mathrm{Mn}^{\mathrm{II}}$ ion is in an octahedral environment, with the equatorial plane being defined by the O atoms of four monodentate carboxylate groups, and the octahedron being completed by two trans-coordinated water molecules. There are intramolecular hydrogen bonds between the coordinated water molecules and the non-coordinated O atoms of the carboxylate groups. Hydrogen bonds between the amino groups and the carboxylate groups of neighbouring molecules generate a layered hydrogen-bonded network.

Comment

Manganese complexes containing coordinated carboxylate have been extensively studied for their structural chemistry and biological function. Much research has focused on the

(I)
preparation of model compounds to mimic various manganese enzymes, such as manganese catalase (Christou, 1989) and the water-oxidizing oxygen-evolving complex (OEC) of photosystem II (Linburg et al., 1999). A rich structural diversity of carboxylate-containing Mn complexes has been revealed. The carboxylate ligand can coordinate to Mn (in different oxidation states) in different coordination fashions, such as syn and
anti, and monodentate and bidentate (Iikura \& Nagata, 1998). Here, we present the structure of a further such complex, the title compound, (I).

The structure described here shows (I) to be a centrosymmetric mononuclear species, with Mn at a crystallographic centre of symmetry. The $\mathrm{Mn}^{\mathrm{II}}$ ion is in an octahedral environment, with the equatorial plane being defined by the O atoms of four monodentate carboxylate groups of the (4-aminopyridinio)acetate ligands, and the octahedron being completed by two trans-coordinated water molecules (Fig. 1). The perchlorate ions are not coordinated to Mn.

The bond lengths and angles in (I) are normal, and the unique angles in the octahedron are close to ideal (Table 1). In particular, the $\mathrm{Mn}-\mathrm{O} 1 W$ distance (Mn-water) is 2.225 (2) \AA, which is similar to the value of $2.218(2) \AA$ found in $\left[\mathrm{Mn}\left(\mathrm{HC}_{4} \mathrm{O}_{3} \mathrm{NH}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]$ by Hosein et al. (1998). The $\mathrm{C}-\mathrm{O}$ distances in (I) are normal, indicating that the coordination of $\mathrm{Mn}^{\text {II }}$ to acetate does not affect the geometry of the acetate.
The dihedral angles of the basal plane through atoms O2, $\mathrm{O} 2 A, \mathrm{O} 4$ and $\mathrm{O} 4 A$ with the O 2 - and O 4 -containing acetate plane are 37.5 (2) and $56.5(1)^{\circ}$, respectively. The dihedral angles between the N3- and N4-containing pyridyl rings and the C2- and C9-containing acetate planes are 77.8 (2) and $61.7(2)^{\circ}$, respectively. The orientation of the pyridyl ring is defined by the torsion angles of 179.6 (3) ${ }^{\circ}$ for $\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 3-$ C 4 and $178.4(4)^{\circ}$ for $\mathrm{C} 9-\mathrm{N} 4-\mathrm{C} 14-\mathrm{C} 13$.

The non-coordinated carboxylate O atoms (O 1 and O 3) and the water molecule ($\mathrm{O} 1 W$) are cis with respect to the equatorial plane (Fig. 1), and each of O 1 and O 3 is the receptor in an intramolecular hydrogen bond from $\mathrm{O} 1 W$ (Table 2). In the

Figure 1
A view of the structure of (I) showing the atom-numbering scheme, with 30% probability displacement ellipsoids. H atoms have been omitted for clarity.
crystal, intermolecular hydrogen bonds between the amino group of the ligand and the O atoms of the carboxylate groups from neighbouring molecules, together with weak hydrogen bonds formed between the amino groups and a disordered perchlorate ion, form a layered hydrogen-bonded network.

Experimental

$\mathrm{Mn}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1.00 \mathrm{mmol})$ was mixed with 4 -amino- N-pyridine acetate $(4.00 \mathrm{mmol})$ in a thick Pyrex tube, and pyridine $(0.10 \mathrm{ml})$ and n-butanol $(2.50 \mathrm{ml})$ were then added. The solution was heated at 363 K for 2 d , and was then kept at ambient temperature for one week for crystallization to occur. Colourless prismatic crystals of (I) were formed.

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$
$M_{r}=898.49$
Triclinic, $P \overline{1}$
$a=9.049$ (2) A
$b=10.507$ (3) \AA
$c=10.779(3) \AA$
$\alpha=71.79$ (4) ${ }^{\circ}$
$\beta=89.52(4)^{\circ}$
$\gamma=76.13(4)^{\circ}$
$V=942.7(4) \AA^{3}$

$$
\begin{aligned}
& Z=1 \\
& D_{x}=1.583 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 2867 \\
& \quad \text { reflections } \\
& \theta=1.4-27.8^{\circ} \\
& \mu=0.58 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, colourless } \\
& 0.3 \times 0.2 \times 0.2 \mathrm{~mm} \\
& \\
& \\
& 3275 \text { independent reflections } \\
& 2834 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.043 \\
& \theta_{\max }=25^{\circ} \\
& h=-8 \rightarrow 10 \\
& k=-11 \rightarrow 12 \\
& l=-10 \rightarrow 12
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: empirical (SADABS; Sheldrick, 1997)
$T_{\text {min }}=0.870, T_{\text {max }}=0.901$
4859 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0923 P)^{2}\right. \\
& \quad+0.2644 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.48 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.45 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Mn}-\mathrm{O} 4$	$2.133(2)$	$\mathrm{N} 2-\mathrm{C} 12$	$1.322(4)$
$\mathrm{Mn}-\mathrm{O} 2$	$2.151(2)$	$\mathrm{C} 2-\mathrm{N} 3$	$1.469(5)$
$\mathrm{Mn}-\mathrm{O} 1 W$	$2.225(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.344(5)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.238(4)$	$\mathrm{N} 3-\mathrm{C} 7$	$1.337(5)$
$\mathrm{O} 2-\mathrm{C} 1$	$1.240(4)$	$\mathrm{N} 4-\mathrm{C} 10$	$1.349(5)$
$\mathrm{O} 3-\mathrm{C} 8$	$1.238(4)$	$\mathrm{N} 4-\mathrm{C} 14$	$1.349(5)$
$\mathrm{O} 4-\mathrm{C} 8$	$1.240(4)$	$\mathrm{N} 4-\mathrm{C} 9$	$1.459(5)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.330(5)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.411(5)$
$\mathrm{O} 4-\mathrm{Mn}-\mathrm{O} 2$	$90.15(11)$	$\mathrm{O} 1-\mathrm{O} 1 W-\mathrm{O} 3$	$111.15(13)$
$\mathrm{O} 4-\mathrm{Mn}-\mathrm{O} 1 W$	$91.80(10)$	$\mathrm{N} 3-\mathrm{C} 2-\mathrm{C} 1$	$113.1(3)$
$\mathrm{O} 2-\mathrm{Mn}-\mathrm{O} 1 W$	$89.49(9)$	$\mathrm{C} 7-\mathrm{N} 3-\mathrm{C} 2$	$120.3(3)$
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Mn}$	$127.5(2)$	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$122.5(3)$
$\mathrm{C} 8-\mathrm{O} 4-\mathrm{Mn}$	$130.8(2)$	$\mathrm{O} 3-\mathrm{C} 8-\mathrm{O} 4$	$126.6(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	$127.5(3)$	$\mathrm{O} 3-\mathrm{C} 8-\mathrm{C} 9$	$116.3(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$115.6(3)$	$\mathrm{N} 2-\mathrm{C} 12-\mathrm{C} 11$	$121.9(3)$

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1 $W-\mathrm{H} 1 W A \cdots \mathrm{O} 3$	0.90	1.93	$2.787(4)$	160
O1 $W-\mathrm{H} 1 W B \cdots \mathrm{O} 1$	0.90	2.05	$2.856(4)$	158
N1-H1A $\cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.05	$2.879(5)$	163
N2-H2A ${ }^{\text {ii }}$	0.86	2.35	$3.072(5)$	142
N2-H2A \cdots O $^{\mathrm{ii}}$	0.86	2.51	$3.205(5)$	138
N2-H2B $\cdots \mathrm{O}^{\mathrm{iii}}$	0.86	2.35	$3.038(5)$	137

Symmetry codes: (i) $x, y, z-1$; (ii) $1-x,-y, 1-z$; (iii) $1+x, y-1, z$.

This work was funded by the National Natural Science Foundation of China (grant Nos. 29871017 and 29823001). The authors thank Mr Yong-Jiang Liu (Coordination Chemistry Institute, Nanjing University) for the X-ray structure determination.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1355). Services for accessing these data are described at the back of the journal.

References

Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Christou, G. (1989). Acc. Chem. Res. 22, 328-336.
Hosein, H., Hall, L. A., Lough, A. J., Desmarais, W., Velaand, M. J. \& Foxman, B. M. (1998). Inorg. Chem. 37, 4184-4189.

Iikura, H. \& Nagata, T. (1998). Inorg. Chem. 37, 4702-4711.
Linburg, J., Vrettos, J. S., Liable-Sands, L. M., Rheingold, A. L., Crabtree, R. H. \& Brudvig, G. W. (1999). Science, 283, 524-526.
Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.

